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Motivating examples

Consider a loan taken out at constant interest rate r.

Let D(t) be debt outstanding at beginning of period t and let Z(t) be the
repayment at the end of the period.

Initial debt level is D(0).

Debt evolves as

D(t+ 1) = D(t) + rD(t)− Z(t) = (1 + r)D(t)− Z(t).

This is a difference equation.

Time here is discrete.
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Similar example is interest accumulation:

D(t+ 1) = D(t) + rD(t) = (1 + r)D(t).

By backward substitution,

D(t+ h) = (1 + r)hD(t) =
(
1 + log(1 + r)h+O(h2)

)
D(t),

where O(h2) collects terms that shrink to zero at least as fast as h2 when

h → 0. Use a Taylor series of ah = elog(a
h) = eh log(a) around h = 0 to get

this:

eh log(a) = e0 log(a)+e0 log(a) log(a)h+
1

2
e0 log(a) log(a)2h2+· · · = 1+log(a)h+· · ·

Now re-arrange to get

D(t+ h)−D(t)

h
= (log(1 + r) +O(h)) D(t).

Taking limits as h→ 0 gives

dD(t)

dt
= log(1 + r)D(t).

This is a differential equation. Time is continuous.
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Population size at time t is P (t) and evolves like

dP (t)

dt
= aP (t)

(
1− 1

c
P (t)

)
,

where c > 0.

Suppose that c =∞, so that

dP (t)

dt
= aP (t).

This is called the Malthusian model.

This model implies that in the long run population grows exponentially.

The introduction of finite c imposes a capacity constraint. This is called the
Verhulst model.

When population is small the correction factor is small. When population
grows large, the correction term (which is quadratic) starts to dominate the
Malthusian term (which is linear).
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Differential equations

Let y = y(x) be a differentiable function.

In a typical application x will be time or distance.

We write derivatives as y′ = dy/dx, y′′ = d2y/dx2, and so on.

A differential equation relates y to one or more of its derivatives.

An nth-order equation involves up to the nth-derivative. For a function F ,

y′ = F (x, y)

is a first-order equation.

A first-order linear equation is

y′ + a(x)y = b(x)

for functions a and b.

The goal is to recover the function(s) y.

7 / 87



An example

A simple first-order linear equation is

y′ + ay = 0

for a constant a.

This is a homogeneous first-order equation with constant coefficient.

An educated guess shows that

y = e−ax

is a solution to this differential equation.

Indeed, y′ = −ae−ax and so

y′ + ay = −ae−ax + ae−ax = 0.

The family of curves y = ce−ax for constants c collects all solutions.

We are generally not interested in the trivial solution y = 0.
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If we complement the equation with an initial condition a single member of
the family can be selected as the solution.

Suppose that y(x0) = y0. Then

y0 = ce−ax0

follows from the general solution.

Consequently, we have that c = y0e
ax0 and

y = ce−ax = (y0e
ax0) (e−ax) = y0e

−a(x−x0)

is the solution to this initial-condition problem.
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Picard theorem

Consider
y′ = F (x, y(x)).

Suppose that F is

a) continuous in x,

b) Lipschitz in y, i.e.,

|F (x, s)− F (x, q)| ≤ c |s− q|

for finite constant c (independent of x).

Then, for a neighborhood around x0, there exists a unique function y for
which

y′ = F (x, y(x)), y(x0) = y0,

for all x in that neighborhood.
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Solutions, approximations, and direction fields

Picard’s result guarantees that a well-defined solution exists.

This does not imply that an explicit solution is always available.

For several classes of differential equations we do have explicit solutions but
for many others we do not.

When such expressions are lacking we can resort to numerical approximation
methods.

Direction fields and phase diagrams are also useful to understand the behavior
of solutions.
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First-order linear equations

The general solution to
y′ + a(x)y = b(x)

can be found in several ways.

One way that always works is to multiply through by the integrating factor

A(x) = e
∫
a(x) dx.

Note that A′ = aA.

Multiplying through the equation yields A(x)y′ +A(x)a(x)y = A(x)b(x).

By the chain rule, this is

(A(x)y)′ = A(x)b(x),

and integration yields the solution.
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An example

In
y′ + 2xy = x

the integrating factor is ex
2

.

Multiplication yields

ex
2

y′ + 2xex
2

y = ex
2

x.

Thus, (ex
2

y)′ = ex
2

x and

ex
2

y =
1

2
ex

2

+ c

follows by integration.

Re-arranging yields the explicit solution family

y =
1

2
+ ce−x2
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An alternative derivation

For the equation
y′ + a(x)y = b(x)

we call the homogeneous version

y′ + a(x)y = 0

the complementary equation.

The complementary equation, we know, can be solved by integrating the
re-arranged equation

y′

y
= −a(x),

which yields log|y| = −
∫
a(x)dx or y = ce−

∫
a(x)dx. Let y1 denote one of

these solutions.

Now we look for solutions of the form y = uy1 for the non-homogeneous
equation.
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By the chain rule
(uy1)′ = u′y1 + uy′1,

and so by substitution the original equation at y = uy1 can be written as

(u′y1 + uy′1) + a(x)uy1 = b(x).

Now re-arrange to write

u′y1 + u(y′1 + a(x)y1) = b(x)

and exploit the fact that y′1 +a(x)y1 = 0, by construction, to get u′y1 = b(x),
and thus

u′ =
b(x)

y1(x)
.

We find u and thus y = uy1 by integration.
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An example

For the example
y′ + 2xy = x

the complementary equation is y′1 + 2xy1 = 0.

We know that
y1 = e−x2

is a particular solution.

Thus,

u =

∫
x

e−x2 dx =

∫
xex

2

dx =
1

2
ex

2

+ c.

Therefore,

y = uy1 =

(
1

2
ex

2

+ c

)
e−x2

=
1

2
+ ce−x2

,

which, of course, agrees with our result from before.
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More examples

xy′ + log(x)y = 0
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y′ + 3y = x
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Separable equations

A (nonlinear) separable equation is of the form

h(y)y′ = g(x)

for (integrable) functions h and g.

Let H(y) =
∫
h(y)dy and G(x) =

∫
g(x)dx.

By the chain rule
dH(y(x))

dx
=
dH

dy

dy

dx
= h(y)y′.

Our original equation can thus be written as

dH(y(x))

dx
=
dG(x)

dx

and integration gives
H(y) = G(x) + c

which yields an implicit solution to the differential equation.
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An example

A nonlinear equation is

y′ = −x
y
.

Re-arrange to get
yy′ = −x,

verifying that this is separable with h(y) = y and g(x) = −x.

The implicit solution is
y2 + x2

2
= c.

(note that c < 0 make no sense here)

We can re-define the integration constant and write y2 + x2 = c2, which can
be solved for y to get

y =

{ √
c2 − x2 for − c < x < c

−
√
c2 − x2 for − c < x < c

These are semi-circles (with radius c) above and below the horizontal axis.
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Another example

Standard logistic equation is (with y ∈ (0, 1))

y′ = y(1− y)

and is separable as
1

y(1− y)
y′ = 1.

Note that
1

y(1− y)
=

1

y
+

1

1− y
and so ∫

1

y(1− y)
dy = log y − log(1− y).

Hence,

y =
cex

1 + cex
.
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With an initial condition we have

y0 =
cex0

1 + cex0

which gives

c =
y0

(1− y0)
e−x0

and so

y =

y0
(1−y0)

e−x0ex

1 + y0
(1−y0)

e−x0ex
=

ex−x0

1−y0
y0

+ ex−x0
=

y0
y0 + (1− y0)e−(x−x0)

is the specific solution.
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More examples

x5y′ + y5 = 0
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yy′ = x+ 1
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y′ = x2y2
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Direction fields

For the equation
y′ = F (x, y)

an explicit solution is typically not available.

Nonetheless, for any given point (x, y) in the Cartesian plane we can calculate
the slope of the solution, F (x, y).

A direction field plots the slope on a grid of such points.

Consider
y′ = −y,

with general solution (from above) given by y = ce−x.

We have
y′ < 0 if y > 0
y′ = 0 if y = 0
y′ > 0 if y < 0

,

independent of x. Further, |y′| decreases as |y| increases, converging to zero.

26 / 87



0 1 2 3 4
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
direction field for y'=-y

0 1 2 3 4
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

direction field for y'=y

27 / 87



-2 -1 0 1 2
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
direction field for y' = -x/y

-2 -1 0 1 2
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y

direction field for y' = x/y

28 / 87



Phase diagram

Equations of the form
y′ = F (y)

are called autonomous.

We can plot y′ against y to assess the behavior of the solution.

An equilibrium y∗ is any point such that

F (y∗) = 0

(the slope is zero at such a point).

An equilibrium y∗ is (locally) stable if F ′(y∗) < 0 and unstable if F ′(y∗) > 0.
Otherwise it is semi-stable.
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An example

Draw the phase diagram for the logistic equation

y′ = y(1− y).

Give the equilibrium point(s) and classify them as stable/unstable.
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An application

Output is produced using capital K and labor L according to

AK1−aLa, A > 0, a ∈ (0, 1).

A (constant) fraction s of output is saved an re-invested in capital while labor
grows at constant rate q. We begin with initial stocks K0, L0 at time zero.
This is Solow’s growth model.

So,
K′ = sAK1−aLa, L′ = qL.

Clearly, the general solution for labor is L = ceqx and so

L = L0e
qx.

Substitution gives K′ = sAK1−aLa
0e

aqx and yields the separable equation

Ka−1K′ = sALa
0e

aqx.
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Hence,

K = a

√
sALa

0

q
eaqx + c.

The initial condition gives c = Ka
0 − sALa

0/q and so

K = a

√
sALa

0

eaqx − 1

q
+Ka

0 .

The capital to labor ratio is

k =
K

L
=

a

√
sALa

0
eaqx−1

q
+Ka

0

La
0e

aqx

= a

√
s

q
(A− e−aqx) +

(
K0

L0

)a

e−aqx −→ a

√
s

q
A

as x ↑ ∞.
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Use the shorthand f(k) = Ak1−a.

We have

k′ =

(
K

L

)′
=
K′L−KL′

L2
=
K′ − kL′

L

and so
k′ = sf(k)− qk,

which is nonlinear but autonomous.

The steady state of k is found by solving

sf(k)− qk = 0

for k and yields

k∗ = a

√
s

q
A.
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Numerical approximation

When a closed-form solution is not available we may compute a numerical
approximation to it.

A simple such approximating function can be obtained using Euler’s method.

Say that
y′(x) = F (x, y(x)), y(x0) = y0.

Recall that

y(x) =

∫ x

−∞
y′(t) dt =

∫ x

−∞
F (t, y(t)) dt

by the fundamental theorem of calculus.

Hence, for two points x0 < x1,

y(x1)− y(x0) =

∫ x1

−∞
F (t, y(t)) dt−

∫ x0

−∞
F (t, y(t)) dt =

∫ x1

x0

F (t, y(t)) dt,

or,

y(x1) = y0 +

∫ x1

x0

F (t, y(t)) dt.
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In

y(x1) = y0 +

∫ x1

x0

F (t, y(t)) dt

we do not know y(t) for t ∈ (x0, x1).

Now let x1 = x0 + h for a small h > 0.

Assuming that y(x0 + h) ≈ y(x0) for small h an approximation to y(x1) is

y1 = y0 +

∫ x1

x0

F (x0, y0) dt = y0 + hF (x0, y0),

which can be computed.

The iteration
yk+1 = yk + hF (xk, yk)

then suggests itself.

Clearly, the error gets worse for larger k and, all else equal, for larger h.
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Order reduction

First-order equations are central.

Higher-order differential equations can be reduced to (a system of) first-order
equations.

Consider the second-order linear equation

y′′ + a(x)y′ = b(x).

Note that the level y does not feature here.

We can perform the substitution y′ = p. Then y′′ = p′ and so

p′ + a(x)p = b(x)

is a first-order equation.

We can first solve for p and then for y in a second step.

We should expect two free parameters here, and so two initial conditions will
be needed to pin both of them down.
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An example

Say that
xy′′ − y′ = 3x2.

Substitution and re-arrangement gives

p′ − 1

x
p = 3x.

Using integrating factor e
∫
−x−1dx = e− log(x) = elog(x

−1) = x−1 its solution
is

p = 3x2 + cx.

Recalling that p = y′ we have

y′ = 3x2 + cx,

which is a polynomial; so

y = x3 +
c

2
x2 + d

is the solution to the original second-order equation.
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A second-order equation

In the homogeneous constant-coefficient problem

ay′′ + by′ + cy = 0

a natural candidate solution is of the form y = erx. Indeed, for this solution,

a (erx)′′ + b (erx)′ + c (erx) = 0

yields ar2erx + brerx + cerx = 0 but for this to be true at all x we will need
that

ar2 + br + c = 0

for which the solutions are

r =
−b±

√
b2 − 4ac

2a
.

This means we have, in general, two solutions of the form er1x and er2x, and
so

y = c1e
r1x + c2e

r2x

as general solution.
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An example

Consider the problem
y′′ + 6y′ + 5y = 0

subject to y(0) = 3 and y′(0) = −1.

It has the polynomial equation

1r2 + 6r + 5 = (r + 1)(r + 5) = 0

and so the roots are r1 = −1 and r2 = −5. The general solution follows as

y = c1e
−x + c2e

−5x.

Now

y(0) = c1 + c2 = 3

y′(0) = c1 + 5c2 = 1
,

so that c1 = 7
2

and c2 = − 1
2

and

y =
7

2
e−x − 1

2
e−5x.

42 / 87



Fundamental solution set

A fundamental solution set (y1, y2) to the second-order equation is one so
that any solution y can be written as

y = c1y1 + c2y2,

which is the general solution.

y1, y2 are fundamental if they are linearly independent functions, i.e., they
are not constant multiples of one another.

Can be re-stated as the requirement that the Wronskian (function)

W =

∣∣∣∣ y1 y2
y′1 y′2

∣∣∣∣ = y1y
′
2 − y′1y2

has no zeros.

In general, with two solutions, y1 = er1x and y2 = er2x

y2
y1

= e(r2−r1)x

is non-constant (in x) if the roots are distinct.
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Another example

Now take
y′′ + 6y′ + 9y = 0.

Then the polynomial r2 + 6r + 9 = (r + 3)2 has only one distinct root, with
associated solution

y1 = e−3x.

We need a second (linearly independent) solution. We try y = uy1 = ue−3x.
Then

y′ = u′y1 + uy′1 = (u′ − 3u)e−3x, y′′ = (u′′ − 6u′ + 9u)e−3x,

so that
y′′ + 6y′ + 9y = u′′e−3x = 0

requires that u′′ = 0; thus, u should be a linear function u = c1 + c2x.

The solution is y = (c1 + c2x)e−3x. This is the general solution as it is a
linear combination of y1 = e−3x and xe−3x, which are linearly independent.
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The non-homogeneous case

Now suppose that
y′′ + ay′ + by = c.

We know how to obtain fundamental solutions, y1 and y2 to the associated
homogeneous system.

We look for a particular solution of the form

yp = u1y1 + u2y2

for functions u1, u2.

First we have

y′p = (u′1y1 + u1y
′
1) + (u′2y2 + u2y

′
2) = (u′1y1 + u′2y2) + (u1y

′
1 + u2y

′
2)

and to simplify matters we enforce that u′1y1 + u′2y2 = 0; then

y′p = (u1y
′
1 + u2y

′
2)

y′′p = (u1y
′′
1 + u2y

′′
2 ) + (u′1y

′
1 + u′2y

′
2).
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Now we plug these two expressions back into our differential equation to get

u1

(
y′′1 + ay′1 + by1

)
+ u2

(
y′′2 + ay′2 + by2

)
+ (u′1y

′
1 + u′2y

′
2) = c(x).

But,

y′′1 + ay′1 + by1 = 0

y′′2 + ay′2 + by2 = 0

by construction the differential equation simplifies to just

u′1y
′
1 + u′2y

′
2 = c(x).

Together with the condition enforced on the functions u1, u2 we now have a
system of two equations in two unknowns:

u′1y1 + u′2y2 = 0

u′1y
′
1 + u′2y

′
2 = c(x).

These can be solved for u′1, u
′
2 (which may then be integrated to yield yp).

The general solution then becomes

c1y1 + c2y2 + yp.
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An example

Solve
y′′ − y′ − 2y = 4x2.

The complementary equation is

y′′ − y′ − 2y = 0.

We solve
r2 − r − 2 = 0

for r to find r1 = 2 and r2 = −1. This yields the general solution

c1e
2x + c2e

−x.

Now we look for a particular solution for the non-homogeneous system of the
form

yp = u1y1 + u2y2 = u1e
2x + u2e

−x.
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For this we solve the system

u′1y1 + u′2y2 = 0

u′1y
′
1 + u′2y

′
2 = c

, i.e.,
u′1e

2x + u′2e
−x = 0

2u′1e
2x − u′2e−x = 4x2

.

In matrix notation:(
e2x e−x

2e2x −e−x

)(
u′1
u′2

)
=

(
0

4x2

)
with solution(

u′1
u′2

)
= − 1

3ex

(
−e−x −e−x

−2e2x e2x

)(
0

4x2

)
=

(
4
3
x2e−2x

− 4
3
x2ex

)
.

Then (integrate by parts repeatedly)

u1 = −2

3
x2e−2x − 2

3
xe−2x − 1

3
e−2x

u2 = −4

3
x2ex +

8

3
xex − 8

3
ex

.

The particular solution is then

yp = −6

3
x2 +

6

3
x− 9

3
= −2x2 + 2x− 3.
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Systems of differential equations

For an n-vector y = (y1, . . . , yn)> a first-order linear system of differential
equations (with constant coefficients) is

y′ −Ay = b,

where y′ = (y′1, . . . , y
′
n)>.

Spelled-out this is

y′1 = a11y1 + · · ·+ a1nyn + b1

y′2 = a21y1 + · · ·+ a2nyn + b2

...

y′n = an1y1 + · · ·+ annyn + bn

We will mostly set n = 2, which is without loss of generality.

49 / 87



Fundamental solution set

The general solution will be of the form

y = c1y1 + · · · cnyn,

where y1, . . . ,yn are particular, linearly-independent solutions.

Linear independence is again checked by calculating the Wronskian. Here, it
equals

W = |Y | = |y1, · · · ,yn| =

∣∣∣∣∣∣∣∣∣
y11 y12 · · · y1n
y21 y22 · · · y2n
... · · ·

...
yn1 yn2 · · · ynn

∣∣∣∣∣∣∣∣∣ ,
which should have no zeros.
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A special case

To motivate a future development suppose that

y′1 = a11y1

y′2 = a22y2
,

that is the 2-by-2 matrix A is diagonal. These equations are effectively
stand-alone first-order linear equations.

The general solutions are

y1 = c1e
a11x, y2 = c2e

a22x,

respectively.

The general solution to the system is

y =

(
y1
y2

)
= c1

(
1
0

)
ea11x + c2

(
0
1

)
ea22x.
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Decoupling

Now consider
y′ = Ay

for non-diagonal matrix A.

Suppose that n-by-n matrix A has n linearly-independent eigenvectors.

We can factorize
A = PDP−1,

where P = (p1, . . . ,pn) collects the eigenvectors and D = diag(d1, . . . , dn)
are the associated eigenvalues.

Note that P−1A = DP−1. Defining z = P−1y we have that

z′ = Dz

is a system of stand-alone equations (in the variable z, and not in the original
y, of course!).

52 / 87



Clearly, the solution here is

z = c1


1
0
...
0

 ed1x + c2


0
1
...
0

 ed2x + · · ·+ cn


0
0
...
1

 ednx =

n∑
i=1

cieie
dix

where we write e1, . . . , en for the standard basis vectors for Rn.

Recalling that Pz = y we premultiply by the eigenvectors to obtain the
general solution

y = c1p1e
d1x + c2p2e

d2x + · · ·+ cnpne
dnx =

n∑
i=1

cipie
dix

because Pei = pi.
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An example

In

y′1 = −4y1 − 3y2

y′2 = 6y1 + 5y2
,

the coefficient matrix is

A =

(
−4 −3

6 5

)
.

The eigenvalues are the solutions to∣∣∣∣ −(4 + d) −3
6 (5− d)

∣∣∣∣ = 18− (4 + d)(5− d) = (d− 2)(d+ 1) = 0,

and equal d1 = 2 and d2 = −1.
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The associated eigenvectors are, for d1 = 2,(
−6 −3

6 3

)(
p11
p21

)
=

(
0
0

)
→
(

1
−2

)
= p1

and, for d2 = −1,(
−3 −3

6 6

)(
p12
p22

)
=

(
0
0

)
→
(

1
−1

)
= p2

(Recall that eigenvectors are up to sign and magnitude.)

This gives

y = c1

(
1
−2

)
e2x + c2

(
1
−1

)
e−x

as the general solution.
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To verify, calculate the Wronskian:

W =

∣∣∣∣ 1e2x 1e−x

−2e2x −1e−x

∣∣∣∣ = −e2xe−x + 2e2xe−x = ex.

This is indeed never zero.
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An example

Suppose that (
y′1
y′2

)
=

(
11 −25
4 −9

)(
y1
y2

)
.

Here, ∣∣∣∣ 11− d −25
4 −9− d

∣∣∣∣ = (d− 1)2

has only one solution, d = 1. A cannot be diagonalized; the associated
eigenvector is p = (5, 2)>.

We cannot achieve exact uncoupling of the two equations. We can, however,
search for a generalized eigenvector p∗ so that(

11 −25
4 −9

)
(p,p∗) = (p,p∗)

(
d 1
0 d

)
;

in this case the reparametrized equations are triangular so we can solve them
sequentially.

Note that Ap = dp and Ap∗ = p+dp∗ so we solve (A−dI2)p∗ = p. to find
p∗.
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Solving (
10 −25
4 −10

)
p∗ =

(
5
2

)
gives

p∗ =

(
1
2

0

)
as a solution.

Then

y1 =

(
5
2

)
ex, y2 =

(
1
2

0

)
ex +

(
5
2

)
xex

are linearly-independent solutions and so the general solution becomes

c1

(
5
2

)
ex + c2

((
1
2

0

)
+

(
5
2

)
x

)
ex.

Where does the second solution come from?
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In z co-ordinates we have(
z′1
z′2

)
=

(
d 1
0 d

)(
z1
z2

)
,

i.e.,
z′1 = dz1 + z2 z′2 = dz2.

The second equation is a stand-alone equation and has a solution z2 = edx.

Therefore, from the first equation,

z′1 − dz1 = edx.

This is a generic non-homogeneous first-order equation. Using the integrating
factor approach we find it has a solution

z1 = xedx.
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Hence, translating back to y co-ordinates gives(
y1
y2

)
=

(
5 1

2

2 0

)(
z1
z2

)
=

(
5 1

2

2 0

)(
x
1

)
edx =

((
5
2

)
x+

(
1
2

0

))
edx

as our second particular solution.

Finally, to verify, again calculate the Wronskian:

W =

∣∣∣∣ 5ex 1
2
ex + 5xex

2ex 2xex

∣∣∣∣ = 10xe2x − 2e2x
(

1

2
+ 5x

)
= −e2x 6= 0
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Non-homogeneous equations

We now consider the case where

y′ = Ay + b(x)

for non-zero b(x).

We know how to find a solution for the complementary homogeneous prob-
lem. Let Y = (y1, . . . ,yn) denote the matrix that contains this solution.
Note that

y′1 = Ay1, y′2 = Ay2, etc.

Hence,
Y ′ = AY

for Y ′ = (y′1, . . . ,y
′
n).

We next look for a particular solution of the form Y u for vector function u.

This is the same technique as in the single-equation case.
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If yp = Y u is a solution then

y′p = Y ′u + Y u′ = AY u + Y u′ = Ayp + Y u′.

If this is to be a solution to our system then

y′p = Ayp + b(x)

must hold; this, of course, then means that

Y u′ = b(x)

must be true.

This can be solved by first finding u′ and then integrating the result.
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An example

Take (
y′1
y′2

)
=

(
1 2
2 1

)(
y1
y2

)
+

(
2
1

)
e4x.

We first look for the two fundamental solutions to the complementary system(
y′1
y′2

)
=

(
1 2
2 1

)(
y1
y2

)
.

The characteristic polynomial is∣∣∣∣( 1 2
2 1

)
− d

(
1 0
0 1

)∣∣∣∣ =

∣∣∣∣( 1− d 2
2 1− d

)∣∣∣∣ = (d− 1)2 − 4 = 0

and has two distinct solutions, d1 = 3 and d2 = −1.
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The corresponding eigenvectors are(
−2 2

2 −2

)
p1 = 0 −→ p1 =

(
1
1

)
,

and (
2 2
2 2

)
p2 = 0 −→ p2 =

(
1
−1

)
.

The fundamental solutions are thus

y1 =

(
1
1

)
e3x, y2 =

(
1
−1

)
e−x.

Thus we have obtained

Y =

(
1 e−4x

1 −e−4x

)
e3x, b(x) =

(
2
1

)
e4x
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Now, we need to solve Y u′ = b(x), that is,(
1 e−4x

1 −e−4x

)(
u′1
u′2

)
=

(
2
1

)
ex.

We have (
1 e−4x

1 −e−4x

)−1

= −e
4x

2

(
−e−4x −e−4x

−1 1

)
and so (

u′1
u′2

)
=

(
1 e−4x

1 −e−4x

)−1(
2
1

)
ex

=

(
e−4x e−4x

1 −1

)(
2
1

)
e5x

2

=

(
3e−4x

1

)
e5x

2

=

(
3
2
ex

1
2
e5x

)
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We can integrate both equations easily to get

u1 =
3

2
ex, u2 =

1

10
e5x.

Now it only remains to construct

yp = Y u =

(
1 e−4x

1 −e−4x

)
e3x
(

3
2
ex

1
10
e5x

)
=

1

5

(
8
7

)
e4x

as a particular solution to the non-homogeneous problem.

Putting everything together we get

y = c1y1 + c2y2 + yp

as the general solution to our non-homogeneous system.

66 / 87



Phase planes

The autonomous 2-by-2 system

y′1 = a11y1 + a12y2

y′2 = a21y1 + a22y2

has critical point (0, 0). Assume here that it is the only critical point (So the
coefficient matrix is invertible).

Its general solution is

y1 = c1 p11 e
d1x + c2 p12 e

d2x

y2 = c1 p21 e
d1x + c2 p22 e

d2x

when d1 6= d2

Consider the evolution of this system as x ↑ ∞.

This depends on whether d1 and d2 are (real and) of the same sign.
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Node: d1 < d2 < 0

y1

y2
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Node: d1 > d2 > 0

y1

y2
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Saddle point: d1 < 0 < d2

y1

y2
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Repeated root

Still consider

y′1 = a11y1 + a12y2

y′2 = a21y1 + a22y2.

If a11 = a22 = a and a12 = a21 = 0 this is the system of stand-alone equations
with solution

y1 = c1 ae
dx

y2 = c2 ae
dx.

Otherwise

y1 = c1 p11 e
dx + c2 (p∗12 + p11x) edx

y2 = c1 p21 e
dx + c2 (p∗22 + p21x) edx

as per the above.

These cases give different phase planes.
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Node: d < 0 (stand alone case)

y1

y2
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Node: d < 0 (general case)

y1

y2
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An exercise

The system

y′1 = y1

y′2 = 2y2 − y1

has stationary point (0, 0).

Show that its solution is

y1 = c1e
x

y2 = c1e
x + c2e

2x

Consider the evolution of this system as x ↑ ∞ by plotting the phase plane.

74 / 87



75 / 87



y1

y2
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Outline: Difference equations

First-order equations

Second-order equations

Higher-order systems
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Notation

We consider a process at time t = −(n− 1), 1, 2, . . ..

We write yt = y(t).

A first-order equation is
yt = ayt−1 + b

for constant coefficients a, b.

An nth-order equation is

yt = a1yt−1 + · · · anyt−n + b.

The first n− 1 observations are initial conditions.
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First-order equations

Consider backward substitution of the process

yt = ayt−1 + b.

We have

y0

y1 = ay0 + b

y2 = ay1 + b = a2y0 + ab+ b

y3 = ay2 + b = a3y0 + a2b+ ab+ b

...

and so

yt = aty0 + b

t−1∑
j=0

aj = aty0 + b
1− at

1− a .
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As t→∞
yt →

b

1− a = y∗

if |a| < 1; this is the stability condition. The limit is the steady-state solution;
it is independent of the initial condition.

When a = 1, we have

y0, y1 = y0 + b, y2 = y0 + 2b, yt = y0 + tb,

and yt is a linear function of time.

When a = −1, we have

y0, y1 = −y0 + b, y2 = y0, yt = (−1)ty0 + b {t is uneven},

which oscillates.

The process is explosive if |a| > 1.
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Can also look at more general case

yt = ayt−1 + bt.

We do the same; backward substitution gives

yt = a (ayt−2 + bt−1) + bt

= a2yt−2 + bt + abt−1

= a2 (ayt−3 + bt−2) + bt + abt−1

= a3yt−3 + bt + abt−1 + a2bt−2

...

= aty0 +

t−1∑
j=0

aj bt−j .

Here,
dyt
dbt−j

= aj .

Stick to the case where bt = b from now on.
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In the stable homogeneous case

yt = ayt−1

the solution thus is yt = y0a
t.

In the stable non-homogeneous case

yt = ayt−1 + b

we convert to the homogeneous system by writing everything in deviations
from the steady state:

yt − y∗ = a(yt−1 − y∗) + (1− a)y∗ + b

= a(yt−1 − y∗) + (1− a)
b

1− a + (1− a)
b

1− a
= a(yt−1 − y∗)

and the solution for this then is (yt − y∗) = (y0 − y∗)at or

yt = y∗ + (y0 − y∗)at.
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Second-order equations

For
yt = a1yt−1 + a2yt−2

a guess solution is of the form yt = cαt.

Plugging this in shows that

cαt − a1cαt−1 − a2cαt−2 = cαt−2(α2 − a1α− a2) = 0

must hold at the solution.

Equivalently,
α2 − a1α− a2 = 0,

which has two solutions in general:

α1 =
a1 −

√
a21 + 4a2

2
, α2 =

a1 +
√
a21 + 4a2

2
,

so
yt = c1α

t
1 + c2α

t
2.

The initial conditions (i.e., y−1 and y0) pin down c1, c2.
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Higher-order equations

The nth-order equation

yt = a1yt−1 + · · ·+ anyt−(n−1) + b

can be written as
yt
yt−1

...
yt−(n−1)

 =


a1 a2 · · · an
1 0 · · · 0

. . .

0 0 · · · 1




yt−1

yt−2

...
yt−n

+


b
0
...
0


or, in matrix form

yt = Ayt−1 + b,

which is a first-order vector system.

Generic system of equations has the same form, for suitable matrix A and
vector b.
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The steady-state here will be

y∗ = (In −A)−1b

provided the inversion is justified.

In a homogeneous system

y1 = Ay0, y2 = Ay1 = Ay0 = A2y0, · · · , yt = Aty0

The solution for the non-homogeneous case then is

yt = y∗ + At(y0 − y∗)

The stability condition here is the requirement that all eigenvalues of A are
smaller than one in magnitude.
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Can link this back to the approach taken for differential equations.

Say A is diagonalizable, i.e.,

A = PDP−1

for diagonal matrix of eigenvalues D.

Then
z = P−1y

satisfies
zt = z∗ + Dt(z0 − z∗),

in obvious notation.

This follows immediately from substitution, using that At = PDtP−1.
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An example

For n = 2 the system is(
yt
yt−1

)
=

(
a1 a2
1 0

)(
yt−1

yt−2

)
+

(
b
0

)

The eigenvalues of A solve∣∣∣∣ a1 − α a2
1 −α

∣∣∣∣ = α(α− a1)− a2 = α2 − a1α− a2 = 0,

which is what we found before.
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